Hierarchical zonotopal power ideals

نویسنده

  • Matthias Lenz
چکیده

Zonotopal algebra deals with ideals and vector spaces of polynomials that are related to several combinatorial and geometric structures defined by a finite sequence of vectors. Given such a sequence X , an integer k ≥ −1 and an upper set in the lattice of flats of the matroid defined by X , we define and study the associated hierarchical zonotopal power ideal. This ideal is generated by powers of linear forms. Its Hilbert series depends only on the matroid structure of X . It is related to various other matroid invariants, e. g. the shelling polynomial and the characteristic polynomial. This work unifies and generalizes results by Ardila-Postnikov on power ideals and by Holtz-Ron and Holtz-Ron-Xu on (hierarchical) zonotopal algebra. We also generalize a result on zonotopal Cox modules due to Sturmfels-Xu. Résumé. La théorie de l’algèbre “zonotopique” s’occupe d’idéaux et d’espaces vectoriels de polynômes qui ont un rapport avec plusieurs structures combinatoires et géométriques définies par des suites finies de vecteurs. Étant donné une telle suite X , un nombre entier k ≥ −1 et un ensemble supérieur dans le treillis des plans du matroı̈de défini par X , nous définissons et étudions l’idéal hiérarchique zonotopique, engendré par des puissances de formes linéaires. Sa série de Hilbert dépend seulement de la structure matroı̈dale de X . Il existe des relations avec d’autres invariants de matroı̈des, tels que le polynôme d’épluchage et le polynôme caractéristique. Ce travail unifie et généralise des résultats d’Ardila-Postnikov sur les idéaux de puissances et de Holtz-Ron et HoltzRon-Xu sur l’algèbre zonotopique (hiérarchique). Nous généralisons aussi un résultat sur les modules de Cox zonotopiques, dû à Sturmfels-Xu.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hierarchical Zonotopal Spaces

Zonotopal algebra interweaves algebraic, geometric and combinatorial properties of a given linear map X. Of basic significance in this theory is the fact that the algebraic structures are derived from the geometry (via a nonlinear procedure known as “the least map”), and that the statistics of the algebraic structures (e.g., the Hilbert series of various polynomial ideals) are combinatorial, i....

متن کامل

Two Counterexamples for Power Ideals of Hyperplane Arrangements

We disprove Holtz and Ron’s conjecture that the power ideal CA,−2 of a hyperplane arrangement A (also called the internal zonotopal space) is generated by A-monomials. We also show that, in contrast with the case k ≥ −2, the Hilbert series of CA,k is not determined by the matroid of A for k ≤ −6. Remark. This note is a corrigendum to our article [1], and we follow the notation of that paper.

متن کامل

Combinatorics and geometry of power ideals

We investigate ideals in a polynomial ring which are generated by powers of linear forms. Such ideals are closely related to the theories of fat point ideals, Cox rings, and box splines. We pay special attention to a family of power ideals that arises naturally from a hyperplane arrangement A. We prove that their Hilbert series are determined by the combinatorics of A, and can be computed from ...

متن کامل

Sagbi Bases of Cox-Nagata Rings

We degenerate Cox–Nagata rings to toric algebras by means of sagbi bases induced by configurations over the rational function field. For del Pezzo surfaces, this degeneration implies the Batyrev–Popov conjecture that these rings are presented by ideals of quadrics. For the blow-up of projective n-space at n + 3 points, sagbi bases of Cox–Nagata rings establish a link between the Verlinde formul...

متن کامل

ar X iv : m at h / 05 06 24 2 v 1 [ m at h . C O ] 1 3 Ju n 20 05 REDUCED DECOMPOSITIONS AND PERMUTATION PATTERNS

Billey, Jockusch, and Stanley characterized 321-avoiding permutations by a property of their reduced decompositions. This paper generalizes that result with a detailed study of permutations via their reduced decompositions and the notion of pattern containment. These techniques are used to prove a new characterization of vexillary permutations in terms of their principal dual order ideals in a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2012